Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Самарский государственный аграрный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Высшая математика

Направление подготовки: 38.03.01 Экономика

Профиль: Экономика предприятий и организаций

Название кафедры: Физика, математика и информационные технологии

Квалификация: бакалавр

Форма обучения: очная, очно-заочная

1 ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Высшая математика» является формирование у обучающихся комплекса компетенций, соответствующих их направлению подготовки, и необходимых для эффективного решения будущих профессиональных задач.

Для достижения поставленной цели решаются следующие задачи:

- изучение базовых понятий линейной алгебры и аналитической геометрии, математического анализа, теории вероятностей и математической статистики (математики);
- освоение математического аппарата, необходимого для моделирования и решения экономических задач;
- развитие логического мышления и способности самостоятельно расширять и углублять математические знания.

2 МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП ВО

Дисциплина Б1.О.11 «Высшая математика» относится к обязательной части Блока 1 «Дисциплины (модули)» учебного плана.

Дисциплина изучается в 1 семестре на І курсе очной, очно-заочной формах обучения.

З КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ / ОЖИДАЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ЗАВЕРШЕНИИ ОСВОЕНИЯ ПРОГРАММЫ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций (в соответствии с $\Phi \Gamma OC$ ВО и требованиями к результатам освоения ОПОП):

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	Перечень планируемых результатов обучения по дисциплине
осуществлять поиск,	ИД-1/УК-1. Анализирует задачу, выделяя ее базовые составляющие. ИД-2/УК-1. Осуществляет поиск, критический анализ и синтез информации необходимой, для решения поставленных задач. ИД-3/УК-1. Выбирает вариант решения задачи на основе критического анализа и сис-	Умеет анализировать задачу, выделяя ее базовые составляющие, соотносить задачу с тем или иным известным типом. Владеет навыком анализа поставленной задачи, выделяя ее базовые составляющие и этапы реализации. Знает основы поиска, сбора и обработки информации. Умеет применять методики поиска, сбора и обработки информации; осуществлять критический анализ и синтез информации, полученной из разных источников. Владеет навыком поиска, сбора, описания, систематизации и анализа информации необходимой, для решения поставленных задач. Знает различные типы задач и способы их решения. Умеет выбирать вариант решения задачи на основе критического анализа и системного подхода. Владеет навыком выбирать и реализовывать вариант
	темного подхода.	решения задачи на основе критического анализа и системного подхода.

4 СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины и виды учебной работы

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

для очной формы обучения

		Трудоемкость		Семестры
		1.0		
			(иплины	(кол-во недель
	Вид учебной работы			в семестре)
	вид учесной рассты	Всего	Объем	1
		часов	контактной	(10)
			работы	(18)
Аудиторная кон	тактная работа (всего)	90	90	90
в том числе:	Лекции	36	36	36
Практические занятия		54	54	54
Самостоятельна	я работа (всего), в том числе:	90	2,35	90
СРС в семестре:	тре: Изучение вопросов, выносимых на			14
	самостоятельное изучение	14		14
	Подготовка к практическим занятиям	24	-	24
	Выполнение индивидуальных домашних заданий	16	-	16
СРС в сессию:	Экзамен	36	2,35	36
Вид промежуточной аттестации (экзамен)				экзамен
Общая трудоеми	сость, ч.	180	92,35	180
Общая трудоемкость, зачетные единицы				5

для очно-заочной формы обучения

Ann o mo suo mon wopindi ooy tenna				
			оемкость	Семестры
		дисциплины		(кол-во недель
	Вид учебной работы			в семестре)
	вид учесной рассты	Всего	Объем	1
		часов	контактной	(18)
			работы	(10)
Аудиторная кон	тактная работа (всего)	44	44	44
в том числе:	Лекции	18	18	18
	Практические занятия	26	26	26
Самостоятельна	я работа (всего), в том числе:	136	2,35	136
СРС в семестре:	Изучение вопросов, выносимых на	50		50
	самостоятельное изучение			
	Подготовка к практическим занятиям	30	-	30
	Выполнение индивидуальных домашних заданий	20	-	20
СРС в сессию:	Экзамен	36	2,35	36
Вид промежуточной аттестации (экзамен)				экзамен
Общая трудоеми	сость, ч.	180	46,35	180
Общая трудоемкость, зачетные единицы				5

4.2 Тематический план лекционных занятий

для очной формы обучения

№ п./п.	Тому томучуучу гомутуй	Тъхитория
Nº 11./11.	Темы лекционных занятий	Трудоемкость, ч.
1	Раздел 1. Линейная алгебра и аналитическая геометрия	
1.	Понятие матрицы. Определители квадратных матриц и их свойства. Ми-	2
	норы и алгебраические дополнения. Теорема Лапласа. Операции над мат-	
	рицами. Обратная матрица.	
2.	Линейная зависимость и независимость векторов. Базис. Разложение век-	2
	тора по базису. Длина вектора. Направляющие косинусы вектора. Вектор-	
	ное и смешанное произведение векторов и их свойства.	
3.	Плоскость и ее уравнения: уравнение связки плоскостей; общее уравнение	
	плоскости и его частные случаи; уравнение плоскости, проходящей через	
	три данные точки; уравнение плоскости в отрезках. Расстояние от точки	
	до плоскости. Взаимное расположение плоскостей. Прямая в пространстве	
	и ее уравнения: общие уравнения прямой; параметрические и канониче-	
	ские уравнения прямой; уравнение прямой, проходящей через две точки.	
	Взаимное расположение прямых и плоскостей.	
4.	Комплексные числа, их изображение на плоскости. Модуль и аргумент	
	комплексного числа. Различные формы записи комплексного числа Ал-	
	гебраические действия с комплексными числами.	
	Раздел 2. Математический анализ	
5.	Предел функции, основные свойства пределов. Бесконечно малые и	
	бесконечно большие функции и их свойства. Первый и второй замеча-	
	тельные пределы. Непрерывность функции в точке и на интервале. Одно-	
	сторонние пределы. Непрерывность функции. Классификация точек раз-	
	рыва.	
6.	Определение производной функции, ее механический смысл. Основные	2
	правила дифференцирования. Производная сложной и параметрическиза-	
	данных функций. Дифференциал функции. Производные и дифференциа-	
	лы высших порядков. Теорема Лопиталя.	
7.	Определение функции многих переменных (ФМП). Область определения	
	ФМП. Частные приращения и частные производные ФМП. Полный диф-	
	ференциал. Дифференцирование сложной и неявной функций.	
8.	Производная по направлению. Градиент. Экстремум ФМП. Наименьшее	2
	и наибольшее значения ФМП на замкнутом множестве.	
9.	Первообразная функции. Неопределённый интеграл и его свойства. Таб-	2
	лица основных интегралов. Интегрирование заменой переменной. Интег-	
	рирование по частям.	
10.	Интеграл от функций, содержащих квадратный трехчлен. Интегрирование	2
	тригонометрических функций.	
11.	Определенный интеграл - определение и свойства. Формула Ньютона-	2
	Лейбница. Несобственные интегралы с бесконечными пределами интегри-	
	рования и от неограниченных функций.	
12.	Числовые ряды - определение, действия над ними. Необходимое условие	
	сходимости. Достаточные признаки сходимости знакоположительных и	
	знакочередующихся рядов.	
13.	Абсолютная и условная сходимость знакопеременных рядов. Степенные	2
	ряды. Теорема Абеля. Интервал и радиус сходимости степенного ряда.	
	Раздел 3. Теория вероятностей и математическая статистика	
14.	Виды случайных событий. Классическое определение вероятности. Эле-	2
	менты комбинаторики. Теорема сложения вероятностей. Условная вероят-	
	ность. Теорема умножения вероятностей. Формула полной вероятности.	
	Формула Байеса.	
15.	Случайные величины. Дискретные и непрерывные случайные величины и	2
	способы их задания. Числовые характеристики случайных величин. Нор-	_
	мальный закон распределения непрерывной случайной величины	

16.	Основы статистического описания. Вариационный ряд, его числовые характеристики и графическое представление. Точечные и интервальные оценки. Доверительный интервал. Уровень значимости. Доверительный интервал для оценки математического ожидания и среднего квадратичного отклонения нормального распределения.	
17.	Статистическая гипотеза. Общая схема проверки статистических гипотез. Проверка гипотезы о распределении генеральной совокупности. Критерии согласия Пирсона	2
18.	Функциональная, статистическая и корреляционная зависимости. Основные положения корреляционно-регрессионного анализа. Линейная парная регрессия. Коэффициент корреляции. Уравнения регрессии. Проверка значимости и интервальная оценка параметров связи.	
Всего:	• • •	36

лля очно-заочной формы обучения

	для очно-заочной формы обучения				
№ п./п.	Темы лекционных занятий	Трудоемкость, ч.			
	Раздел 1. Линейная алгебра и аналитическая геометрия				
1.	Понятие матрицы. Определители квадратных матриц и их свойства. Миноры и алгебраические дополнения. Теорема Лапласа. Операции над матрицами. Обратная матрица.	2			
2.	Плоскость и ее уравнения: уравнение связки плоскостей; общее уравнение плоскости и его частные случаи; уравнение плоскости, проходящей через три данные точки; уравнение плоскости в отрезках. Расстояние от точки до плоскости. Взаимное расположение плоскостей. Прямая в пространстве и ее уравнения: общие уравнения прямой; параметрические и канонические уравнения прямой; уравнение прямой, проходящей через две точки. Взаимное расположение прямых и плоскостей. Раздел 2. Математический анализ	2			
3.	Предел функции, основные свойства пределов. Бесконечно малые и бесконечно большие функции и их свойства. Первый и второй замечательные пределы. Непрерывность функции в точке и на интервале. Односторонние пределы. Непрерывность функции. Классификация точек разрыва.	2			
4.	Определение функции многих переменных (ФМП). Область определения ФМП. Частные приращения и частные производные ФМП. Полный дифференциал. Дифференцирование сложной и неявной функций.	2			
5.	Первообразная функции. Неопределённый интеграл и его свойства. Таблица основных интегралов. Интегрирование заменой переменной. Интегрирование по частям.	2			
6.	Определенный интеграл - определение и свойства. Формула Ньютона- Лейбница. Несобственные интегралы с бесконечными пределами интегрирования и от неограниченных функций.	2			
7.	Числовые ряды - определение, действия над ними. Необходимое условие сходимости. Достаточные признаки сходимости знакоположительных и знакочередующихся рядов.	2			
	Раздел 3. Теория вероятностей и математическая статистика				
8.	Виды случайных событий. Классическое определение вероятности. Элементы комбинаторики. Теорема сложения вероятностей. Условная вероятность. Теорема умножения вероятностей. Формула полной вероятности. Формула Байеса.	2			
9.	Основы статистического описания. Вариационный ряд, его числовые характеристики и графическое представление. Точечные и интервальные оценки. Доверительный интервал. Уровень значимости. Доверительный интервал для оценки математического ожидания и среднего квадратичного отклонения нормального распределения.	2			
Всего:		18			

4.3 Тематический план практических занятий

для очной формы обучения

№ п./п.	Том и проктинеских рондтий	Трупорикости
Nº 11./11.	Темы практических занятий Раздел 1. Линейная алгебра и аналитическая геометрия	Трудоемкость, ч
1.	Вычисление определителей 2-го и третьего порядков. Формулы Крамера.	2
2.	Операции над матрицами. Матричный способ решения СЛАУ.	2
3.	Ранг матрицы и его вычисление. Критерий Кронекера-Капелли совместно-	2
	сти СЛАУ. Решение СЛАУ методом Гаусса.	
4.	Действия над векторами в координатной форме. Длина вектора. Направляющие косинусы вектора. Скалярное, векторное, смешанное произведения векторов.	2
5.	Общее уравнение плоскости; уравнение плоскости, проходящей через три данные точки; уравнение связки плоскостей. Взаимное расположение плоскостей.	2
6.	Общие уравнения прямой; параметрические и канонические уравнения прямой; уравнение прямой, проходящей через две точки. Взаимное расположение прямых и плоскостей.	2
	Раздел 2. Математический анализ	
7.	Вычисление пределов функций. Раскрытие неопределенностей вида $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} \frac{\infty}{o} \end{bmatrix}$]. Первый и второй «замечательные» пределы. Исследование функций на непрерывность в заданных точках.	2
8.	Основные правила дифференцирования. Производная сложной функции.	2
	Производная от функции заданной параметрически. Дифференциал функции. Производные и дифференциалы высших порядков.	
9.	Раскрытие неопределенностей (правило Лопиталя).	2
10.	Применение производной к исследованию функций: экстремум функции, возрастание и убывание функции, выпуклость и вогнутость графика функции, точки перегиба. Асимптоты графика. Схема исследования и построения графика функции.	2
11.	Функция нескольких переменных. Область определения. Частные про- изводные. Полная производная и дифференциал. Дифференцирование сложной и неявной функции.	2
12.	Касательная плоскость и нормаль к поверхности функции двух переменных. Производная по направлению. Градиент функции. Экстремум функции нескольких переменных.	2
13.	Наибольшее и наименьшее значения функции на замкнутом множестве. Условный экстремум функции нескольких переменных.	2
14.	Первообразная функции и неопределенный интеграл. Табличное интегрирование. Интегрирование посредством замены переменной.	2
15.	Интеграл от функций, содержащих квадратный двучлен. Интегрирование по частям.	2
16.	Интегрирование некоторых иррациональных функций. Интегрирование тригонометрических функций.	2
17.	Вычисление определенного интеграла. Геометрические приложения определенного интеграла. Вычисление несобственных интегралов по бесконечному промежутку. Интегрирование неограниченных функций. Вычисление определенного интеграла.	2
18.	Числовые ряды. Необходимый признак сходимости ряда. Достаточные признаки сходимости рядов с положительными членами (признак сравнения, Даламбера, интегральный признак Коши).	
19.	Абсолютная и условная сходимость знакопеременного ряда. Признаки сходимости знакочередующегося ряда (признак Лейбница). Вычисление с заданной точностью суммы знакочередующегося ряда.	
20.	Функциональные ряды. Радиус и интервал сходимости степенного ряда. Ряды Тейлора. Основные разложения. Остаточный член ряда Тейлора.	2

	Раздел 3. Теория вероятностей и математическая статистика	
21.	Непосредственный подсчет вероятностей. Теоремы сложения и умножения вероятностей. Полная вероятность. Формула Байеса	2
22.	Повторные независимые испытания.	2
23.	Дискретные случайные величины. Ряд распределения. Числовые характеристики дискретной случайной величины Непрерывная случайная величина. Интегральная функция распределения. Плотность распределения. Числовые характеристики непрерывной случайной величины.	2
24.	Вариационный ряд. Полигон и гистограмма. Числовые характеристики статистических распределений.	2
25.	Интервальные оценки. Доверительный интервал для оценки математического ожидания и среднего квадратичного отклонения нормального распределения. Проверка статистических гипотез.	2
26.	Корреляционный анализ. Линейная парная регрессия. Коэффициент корреляции. Проверка значимости и интервальная оценка параметров связи.	2
27.	Регрессионный анализ. Парная регрессионная модель. Проверка значимости и интервальная оценивание уравнения и коэффициентов регрессии.	2
Всего:		54

лля очно-заочной формы обучения

	для очно-заочной формы обучения				
№ п./п.	Темы практических занятий	Трудоемкость, ч.			
	Раздел 1. Линейная алгебра и аналитическая геометрия				
1.	Вычисление определителей 2-го и третьего порядков. Формулы Крамера. Операции над матрицами. Матричный способ решения СЛАУ.	2			
2.	Ранг матрицы и его вычисление. Критерий Кронекера-Капелли совместности СЛАУ. Решение СЛАУ методом Гаусса.	2			
3.	Общее уравнение плоскости; уравнение плоскости, проходящей через три данные точки; уравнение связки плоскостей. Взаимное расположение плоскостей.	2			
4.	Общие уравнения прямой; параметрические и канонические уравнения прямой; уравнение прямой, проходящей через две точки. Взаимное расположение прямых и плоскостей. Раздел 2. Математический анализ	2			
5.	Основные правила дифференцирования. Производная сложной функции.	2			
3.	Производная от функции заданной параметрически. Дифференциал функции. Производные и дифференциалы высших порядков.	2			
6.	Раскрытие неопределенностей (правило Лопиталя). Применение производной к исследованию функций: экстремум функции, возрастание и убывание функции, выпуклость и вогнутость графика функции, точки перегиба. Асимптоты графика.	2			
7.	Первообразная функции и неопределенный интеграл. Табличное интегрирование. Интегрирование посредством замены переменной.	2			
8.	Интеграл от функций, содержащих квадратный двучлен. Интегрирование по частям.	2			
9.	Интегрирование некоторых иррациональных функций. Интегрирование тригонометрических функций.	2			
	Раздел 3. Теория вероятностей и математическая статистика				
10.	Непосредственный подсчет вероятностей. Теоремы сложения и умножения вероятностей. Полная вероятность. Формула Байеса. Повторные независимые испытания.	2			
11.	Дискретные случайные величины. Ряд распределения. Числовые характеристики дискретной случайной величины Непрерывная случайная величина. Интегральная функция распределения. Плотность распределения. Числовые характеристики непрерывной случайной величины.				
12.	Вариационный ряд. Полигон и гистограмма. Числовые характеристики статистических распределений. Интервальные оценки. Доверительный интервал для оценки математического ожидания и среднего квадратичного отклонения нормального распределения. Проверка статистических гипотез.	2			
13.	Корреляционный анализ. Линейная парная регрессия. Коэффициент корреляции. Проверка значимости и интервальная оценка параметров связи. Регрессионный анализ. Парная регрессионная модель. Проверка значимости и интервальная оценивание уравнения и коэффициентов регрессии.	2			
Всего:		26			

4.4 Тематический план лабораторных работ Лабораторные занятия учебным планом не предусмотрены.

4.5 Самостоятельная работа

для очной формы обучения

	для очной формы обучения	
Вид самостоятельной	Название (содержание работы)	Объем
работы	`	акад. часы
Изучение вопросов, выносимых на само- стоятельное изучение	Самостоятельное изучение литературы по следующим вопросам: - Линии второго порядка. Канонические уравнения кривых второго порядка: окружности, эллипса, гиперболы, параболы и их характеристики. - Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши. - Метод наименьших квадратов. - Интегрирование рациональных дробей. - Вероятность попадания случайной величины в интервал. - Свойства числовых характеристик случайных величин. - Мода и медиана. - Типы выборок. - Несмещенные, эффективные и состоятельные оценки. - Понятие о нелинейной регрессии. - Корреляционное отношение.	
Подготовка к практи- ческим занятиям	Изучение лекционного материала; работа с основной, до- полнительной литературой и ресурсами информационно- телекоммуникационной сети «Интернет»	24
Выполнение индивиду- альных домашних за- даний	1	16
Экзамен	Проработка вопросов, выносимых на экзамен с использованием конспектов лекций, материалов практических занятий, основной и дополнительной литературы, ресурсов информационно-телекоммуникационной сети «Интернет»	36
ИТОГО		90

для очно-заочной формы обучения

Вид самостоятельной	Название (содержание работы)	Объем
работы		акад. часы
Изучение вопросов, выносимых на само- стоятельное изучение	Самостоятельное изучение литературы по следующим вопросам: - Виды векторов. Скалярное произведение векторов и его свойства. Линейные операции над векторами. Проекции вектора на ось. Свойства проекций. Действия над векторами, заданными в координатной форме. - Линии второго порядка. Канонические уравнения кривых второго порядка: окружности, эллипса, гиперболы, параболы и их характеристики. - Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши. - Поверхности и линии уровня Экстремум ФМП. Наименьшее и наибольшее значения ФМП на замкнутом множестве Метод наименьших квадратов. - Интегрирование рациональных дробей. Интегрирование некоторых иррациональных функций. - Свойства сходящихся рядов. Оценка остаточного члена ряда Действия со степенными рядами. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена. Разложение некоторых элементарных функций в ряд Маклорена. - Повторные независимые испытания. Формула Бернулли.	50

	Свойства биномиального распределения вероятностей. Наиве-	
	роятнейшее число наступлений событий. Локальная теорема	
	Лапласа. Интегральная теорема Лапласа. Асимптотическая	
	формула Пуассона.	
	- Статистическая гипотеза. Общая схема проверки статистиче-	
	ских гипотез. Проверка гипотезы о распределении генераль-	
	ной совокупности. Критерии согласия Пирсона. Проверка ги-	
	потезы о равенстве генеральных Проверка гипотезы о равен-	
	стве генеральных дисперсий двух нормальных совокупностей,	
	средних двух нормальных совокупностей.	
	- Понятие о нелинейной регрессии. Корреляционное отношение.	
	Изучение лекционного материала; работа с основной, допол-	
HACKIM POHATHAM	нительной литературой и ресурсами информационно-	30
Теским запитили	телекоммуникационной сети «Интернет»	
Выполнение индивиду- І	Решение задач из индивидуальных домашних заданий	
альных домашних за-		20
даний		
	Проработка вопросов, выносимых на экзамен с использова-	
Экзамен	нием конспектов лекций, материалов практических занятий,	36
	основной и дополнительной литературы, ресурсов информа-	30
	ционно-телекоммуникационной сети «Интернет»	
ИТОГО		136

5 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ

Изучение дисциплины необходимо начать с ознакомления с рабочей программой. Особое внимание следует обратить на вопросы, выносимые для самостоятельного изучения. В тезисах лекций представлен теоретический материал по дисциплине согласно рабочему плану, в конце приведены вопросы для контроля знаний.

Изучая дисциплину необходимо равномерно распределять время на проработку лекций, самостоятельную работу по выполнению практических работ, самостоятельную работу по подготовке к практическим занятиям. Вопросы теоретического курса, вынесенные на самостоятельное изучение, наиболее целесообразно осваивать сразу после прочитанной лекции, составляя конспект по вопросу в тетради с лекционным материалом.

Перед лекцией необходимо просмотреть конспект предыдущей лекции, разобрать и законспектировать теоретические вопросы, вынесенные на самостоятельное изучение. При затруднениях в восприятии материала следует обратиться к дополнительным литературным источникам, лектору или к преподавателю на практических занятиях. При подготовке к практическим занятиям по лекциям и рекомендованным литературным источникам проработать теоретический материал, соответствующий теме занятия. В начале занятия задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании и освоении при решении задач, предназначенных для самостоятельного решения. На занятии доводить каждую задачу до окончательного решения, в случае затруднений обращаться к преподавателю. Студентам, пропустившим занятия, рекомендуется явиться на консультацию к преподавателю и отчитаться по теме пропущенного занятия. Домашние задания должны выполняться самостоятельно, предоставляться в установленный срок и соответствовать установленным требованиям по оформлению.

При работе с литературой следует обратить внимание на источники основной и дополнительной литературы, приведенные в рабочей программе. Для большего представления о дисциплине возможно ознакомление с периодическими изданиями последних лет, Интернетисточниками.

При подготовке к экзамену изучить конспекты лекций, практических работ и рекомендуемую литературу, фиксируя неясные моменты для их обсуждения на плановой консультации.

6 ОСНОВНАЯ, ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА, ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ И РЕСУРСЫ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ»

6.1 Основная литература:

- 6.1.1. Дегтярева, О. М. Краткий теоретический курс по математике для бакалавров и специалистов [Электронный ресурс] : учеб. пособие / Г. А. Никонова, О. М. Дегтярева. Казань : КНИТУ, 2013.-136 с. Режим доступа : https://rucont.ru/efd/302730.
- 6.1.2. Курс лекций по математике [Электронный ресурс] : учебное пособие. М. : РГУФКСМиТ, 2011. 135 с. Режим доступа : https://rucont.ru/efd/202907.
- 6.1.3. Математика [Электронный ресурс] : практ. пособие / Г. А. Ларичева, С. М. Бакусова, М. С. Иванов, Д. К. Иштирякова, М. А. Богданова, В. В. Колушов. Уфа : УГАЭС, 2007.-100 с. Режим доступа : https://rucont.ru/efd/143773.

6.2 Дополнительная литература:

- 6.2.1. Беришвили, О. Н. Математика. Математическая статистика [Электронный ресурс]: методические указания для практических занятий. Ч. І / С. В. Плотникова, О. Н. Беришвили. Самара: РИЦ СГСХА, 2015. 79 с. Режим доступа: https://rucont.ru/efd/349940.
- 6.2.2. Высшая математика для студентов заочной формы обучения [Электронный ресурс]: учеб. пособие. Ч. III / М. Г. Ахмадиев, Д. Н. Бикмухаметова, Г. Б. Гурьянова, Т. Х. Каримов, О. Н. Тюленева, И. И. Хамдеев. Казань: КГТУ, 2006. 70 с. Режим доступа: https://rucont.ru/efd/283376.
- 6.2.3. Калиева, О. М. Прикладные задачи математики в экономике и управлении [Электронный ресурс] : учеб. пособие / А. И. Буреш, О. М. Калиева. Оренбург : ОГУ, 2012. 110 с. Режим доступа : https://rucont.ru/efd/179386.
- 6.2.4. Семушина, Е. И. Математика для экономистов [Электронный ресурс] : учебное пособие. Челябинск : ЧГАКИ, 2008. 75 с. (Ч. 1 Линейная алгебра и аналитическая геометрия). Режим доступа : https://rucont.ru/efd/192240.

6.3 Программное обеспечение:

- 6.3.1. Microsoft Windows 7 Профессиональная 6.1.7601 Service Pack 1.
- 6.3.2. Microsoft Windows SL 8.1 RU AE OLP NL.
- 6.3.3. Microsoft Office стандартный 2013.
- 6.3.4. Microsoft Office Standard 2010.
- 6.3.5. Kaspersky Endpoint Security для бизнеса Стандартный Russian Edition.
- 6.3.6. WinRAR:3.x: Standard License educational –EXT.
- 6.3.7. 7 zip (свободный доступ).

6.4 Перечень информационно-справочных систем и профессиональных баз данных:

- 6.4.1. http://rucont.ru/catalog Национальный цифровой ресурс Руконт межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум.
 - 6.4.2. http://e.lanbook.com/books/ Электронно-библиотечная система издательства Лань.
 - 6.4.3. http://www.mathnet.ru Общероссийский математический портал.

7 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Ī	$N_{\underline{0}}$	Наименование специальных помещений и	Оснащенность специальных помещений и
	Π/Π	помещений для самостоятельной работы	помещений для самостоятельной работы
Ī	1	Учебная аудитория для проведения занятий лек-	Учебная аудитория на 30 посадочных мест,
		ционного типа, занятий семинарского типа, курсо-	укомплектованная специализированной ме-
		вого проектирования (выполнения курсовых ра-	белью (столы, стулья, лавки, учебная доска)
		бот), групповых и индивидуальных консультаций,	и техническими средствами обучения (пе-
		текущего контроля и промежуточной аттестации,	реносной проектор, переносной ноутбук,
		ауд. 3307.	переносной экран)
		Самарская обл., г. Кинель, п.г.т. Усть-Кинельский,	
		vл. Спортивная. д. 8A.	

Учебная аудитория для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, ауд. 3311.	укомплектованная специализированной мебелью (столы, стулья, учебная доска) и техническими средствами обучения (переностическими средствами обучения средствами обучения (переностическими средствами обучения средствами
Самарская обл., г. Кинель, п.г.т., Усть-Кинельский, ул. Спортивная, д. 8А.	1 /
Помещение для самостоятельной работы, ауд. 3310a (читальный зал). Самарская обл., г. Кинель, п.г.т. Усть-Кинельский, ул. Спортивная, д. 8А.	плектованное специализированной мебелью (компьютерные столы, стулья) и оснащенное компьютерной техникой (6 рабочих станций), подключенной к сети «Интернет» и обеспечивающей доступ в электронную информационнообразовательную среду университета.
Помещение для хранения и профилактического обслуживания учебного оборудования, ауд. 3203б. Самарская обл., г. Кинель, п.г.т. Усть-Кинельский, ул. Спортивная, д. 8А.	учебного оборудования:

8 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

8.1 Виды и формы контроля по дисциплине

Контроль уровня усвоенных знаний, освоенных умений и приобретенных навыков (владений) осуществляется в рамках текущего и промежуточного контроля в соответствии с Положением о текущем контроле и промежуточной аттестации обучающихся.

Текущий контроль освоения компетенций по дисциплине проводится при изучении теоретического материала, выполнении заданий на практических занятиях, выполнении индивидуальных заданий в виде докладов. Текущему контролю подлежит посещаемость обучающимися аудиторных занятий и работа на занятиях.

Итоговой оценкой освоения компетенций является промежуточная аттестация в форме экзамена, проводимая с учетом результатов текущего контроля в 1 семестре (очная, очнозаочная и заочная формы обучения).

8.2 Типовые контрольные задания или иные материалы, необходимые для оценки результатов освоения образовательной программы в рамках учебной дисциплины

Оценочные средства для проведения текущей аттестации

Текущий контроль успеваемости студентов по дисциплине «Высшая математика» включает выполнение индивидуальных домашних заданий (ИДЗ), которые преследуют цель закрепления теоретических знаний и развития навыков самостоятельных, практических математических расчетов, в том числе при решении экономических задач.

Индивидуальные домашние задания (ИДЗ)

ИДЗ №1
1. Вычислить определитель третьего порядка
$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 2 & 5 \end{vmatrix}$$
 тремя способами: 1) по пра-

вилу треугольника; 2) раскладывая по элементам второй строки; 3) раскладывая по элементам первого столбца.

2. Для двух матриц A и B найти: 1) линейную комбинацию матриц $\alpha A + \beta B$; 2) произведение матриц AB и BA; 3) обратную матрицу A^{-1} , если $\alpha = -2$, $\beta = 3$,

$$A = \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix}.$$

3. Найти ранг матрицы.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 7 & 11 & 15 \\ 3 & -3 & -3 & 6 \\ 6 & 3 & 6 & 6 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 7 & 11 & 15 \\ 3 & -3 & -3 & 6 \\ 6 & 3 & 6 & 6 \end{pmatrix}.$$
 4. Решить систему $\begin{cases} x+3y-z=4 \\ 2x-y-5z=-15 \text{ двумя способами: 1) с помощью обратной мат-} 5x+y+4z=19 \end{cases}$ ы; 2) по формулам Крамера.

рицы; 2) по формулам Крамера.

5. Решить систему линейных уравнений $A \cdot X = B$ методом Гаусса, выяснив предварительно вопрос о ее совместности с помощью теоремы Кронекера-Капелли. В случае неопределенности системы найти ее общее, базисное и любое частное решение.

$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 1 \\ 3x_1 - x_2 + x_3 + 4x_4 + 3x_5 = 4 \\ x_1 + 5x_2 - 9x_3 - 8x_4 + x_5 = 0 \end{cases}$$

ИДЗ № 2

- 1. Даны координаты вершин пирамиды ABCD: A(1,1,1), B(-1,0,2), C(3,-3,0), D (2,3,4). Найти: 1) Координаты векторов \overrightarrow{AB} и \overrightarrow{AC} ; 2) угол φ между векторами \overrightarrow{AB} и \overrightarrow{AC} ; 3) $np_{AB}\overrightarrow{AC}$; 4) площадь грани ABC и ее высоту h, опущенную на ребро A_1A_3 ; 4) объем пирамиды ABCD и ее высоту H, опущенную из вершины D.
- 2. Написать разложение вектора \vec{x} =(3,-2,7) по векторам \vec{a}_1 =(4,-5,1), \vec{a}_2 =(1,-1,3), $\vec{a}_3 = (1, -2, -2).$
- 3. Даны координаты вершины треугольника ABC: A(4,3), B(16,-6), C(20,16). Требуется найти: 1) уравнения сторон AB и BC и их угловые коэффициенты; 2) длину стороны AB; 3) угол B в радианах; 4) уравнение высоты CD и ее длину; 5) уравнение медианы AE и координаты точки К пересечения этой медианы с высотой СД; 6) уравнение прямой, проходящей через точку K параллельно стороне AC; 7) координаты точки M, расположенной симметрично точке A относительно прямой CD.
- 4. Найдите расстояние от точки $M_0(1,-1,4)$ до плоскости, проходящей через три точки $M_1(1,5,7), M_2(-3,6,3)$ и $M_3(-2,7,3)$..
- 5. Написать уравнение плоскости, проходящей через точку A(3,-4,1) перпендикулярно вектору BC, где B (5,3,-4), C (7,8,3).
 - 6. Найдите угол между плоскостями $x \sqrt{2}y + z 1 = 0$ и $x + \sqrt{2}y + z + 3 = 0$.

7. Найти координаты точки M пересечения плоскости π : x - y + 2z + 3 = 0 и прямой

$$L: \frac{x-1}{1} = \frac{y+2}{-1} = \frac{z-1}{2}.$$

8. Найти канонические уравнения прямой, заданной в общем виде:

$$\begin{cases} x - y + z - 2 = 0, \\ x + y - z = 0. \end{cases}$$

9. Построить кривые второго порядка и выписать их характеристики: 1) $x^2 + y^2 + 4x - 6y - 3 = 0$; 2) $3x^2 - y^2 - 12 = 0$; 3) $y^2 + 4y - x + 5 = 0$.

1. Найти пределы функций: a)
$$\lim_{x\to 2} \frac{2x^2+x-10}{x^2+x-6}$$
, б) $\lim_{x\to 0} \frac{x}{\sqrt{x+1}-1}$, в)

$$\lim_{x \to \infty} \frac{x+2}{2x^2 + x + 1}, \, \Gamma) \lim_{x \to 0} \frac{4x}{arctg2x}., \, \pi \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{5x+2}.$$

- 2. Исследовать на непрерывность функции: $y = \frac{x}{x-3}$.
- 3. Исследовать данную функцию на непрерывность и построить ее график.

$$y = \begin{cases} 4 - x^2, & ecnu & x \le -1 \\ 2 - x, & ecnu & -1 < x < 2 \\ x - 5, & ecnu & x \ge 2 \end{cases}$$

ИДЗ №4

1. Продифференцировать данные функции:

$$a)y = x^{5} + \frac{1}{x^{4}} - \sqrt[3]{x^{2}} + 3; \quad \delta)y = x^{3} \cdot \sin x;$$

$$b)y = \frac{x^{2} + 1}{arctgx}; \quad c)y = 2^{x} \cdot tgx.$$

2. Вычислить производные сложной функции:

a)
$$y = arctg\sqrt{x}$$
; $6) y = 3^{tgx} \cdot \cos^2 x$;
b) $y = \ln \sin(x^3 + 2)$; $z) y = arcctg(e^{\cos 3x})$.

3. Найти y' выполнив сначала логарифмирование указанной функ-

ции
$$y = x \cdot \sqrt[3]{\frac{x^2}{x^2 + 1}}$$
.

- 4. Найти производную y', если $a)y = (x+1)^{\sin x}$; $b)y = (1+x^2)^{arctg^2x}$.
- 5. Найти производную y_x' функции, заданной параметрически

$$\begin{cases} x = \cos^3 t, \\ y = \sin^3 t. \end{cases}$$

6. Пользуясь правилом Лопиталя, найти указанные пределы:

a)
$$\lim_{x\to 0} \frac{e^x - 1}{\sin x}$$
; δ) $\lim_{x\to 2} \frac{\ln(x^2 - 3)}{x^2 - 3x + 2}$;

$$\varepsilon)\lim_{x\to 0}\frac{\cos x-\cos 2x}{\cos x-\cos 3x};\quad \varepsilon)\lim_{x\to 0}\frac{e^x-e^{-x}-2x}{x-\sin x}.$$

ИДЗ№5

- 1. Найти частные производные и частные дифференциалы функции $w = (xy^2)^{z^3}$.
- 2. Вычислить значения частных производных для функции $u = \ln^2(x^2 + y^2 z^2)$ в точке M(2,1,1). Записать полный дифференциал указанной функции.
 - 3. Найти частные производные функции $z = \sin(uv)$, где u = 2x + 3y; v = xy.
 - 4. Найти полную производную функции $u = x + y^2 + z^3$, где $y = \sin x$; $z = \cos x$.
- 5. Найти производную функции y, заданной неявно уравнением $x^3 + y^3 e^{xy} 5 = 0$.
 - 6. Найти частные производные второго порядка функции $z = e^{x^2y^2}$.
- 7. Дана функция $u = x^2 + y^2 + z^2$. Найти производную $\frac{\partial u}{\partial l}$ в точке M(1, 1, 1) в направлении вектора l = 2i + j + 3k.
- 8. Дана функция $u = x^2 + y^2 + z^2$. Определить градиент в точке M(1, 1, 1) и про-изводную от функции u в данной точке в направлении градиента.

ИДЗ№6

Вычислить неопределенные интегралы:

$$1. \int \frac{\sqrt{x} + \sqrt[3]{x}}{\sqrt[6]{x}} dx \qquad 7. \int x 5^{x} dx \qquad 13. \int \sin 2x \cos 5x dx \\
2. \int e^{\frac{x}{3}} dx \qquad 8. \int x^{2} \sin x dx \qquad 14. \int \sin^{4} 3x dx \\
3. \int \frac{e^{x} dx}{3 + 4e^{x}} \qquad 9. \int arctgx dx \qquad 15. \int \sin^{3} 2x dx \\
4. \int \frac{dx}{\sqrt{1 - 5x^{2}}} \qquad 10. \int \frac{dx}{x^{2} + x - 1} \qquad 16. \int ctg^{4} x dx \\
5. \int \frac{\arccos^{3} x}{\sqrt{1 - x^{2}}} dx \qquad 11. \int \frac{x dx}{\sqrt{3 - 2x - x^{2}}} \qquad 17. \int \frac{\sqrt{x} dx}{\sqrt{x} + 1} \\
6. \int 4^{ctgx} \frac{dx}{\sin^{2} x} \qquad 12. \int \frac{5x + 2}{x^{2} + 2x + 10} dx \qquad 18. \int \frac{dx}{3\sin x + 4\cos x + 5}$$

ИЛЗ№7

- 1. Написать 4 первых члена ряда $\sum_{n=1}^{\infty} \frac{4 \cdot n + \left(-1\right)^n}{\sqrt{n+3}}$. Выписать выражения для a_{n-1} , a_n , a_{n+1} .
- 2. Проверить возможность решения вопроса о сходимости ряда $\sum_{n=1}^{\infty} (6n+1) \cdot n$ с помощью необходимого признака.
 - 3. Применяя признаки сравнения исследовать ряд $\sum_{n=1}^{\infty} \frac{1}{n \cdot \sqrt[3]{n+2}}$ на сходимость.
 - 4. С помощью признака Даламбера исследовать ряд $\sum_{n=1}^{\infty} \frac{(n+1)!}{6^n}$ на сходимость.
- 5. С помощью интегрального признака Коши исследовать ряд $\sum_{n=1}^{\infty} \frac{1}{(n+3) \cdot \ln(n+3)}$ на сходимость.

ИДЗ №8

- 1. Из двух перетасованных совместно колод извлекаются две карты. Какова вероятность того, что 1) обе карты масти крести; 2) хотя бы одна карта масти крести?
- 2. Вероятность бесперебойной работы первого станка в течение часа 0,75. а второго 0.8. Какова вероятность того, что в течение часа будет нарушение в работе только одного станка, если станки работают независимо друг от друга?
- 3. В мясной цех поступает свинина из трех свиноводческих хозяйств. Первое хозяйство поставляет 45% от общей массы свиного мяса, второе 40%, третье 15%. Поставки первого хозяйства содержат 30% свинины, превышающей норму содержания сала, второго 20%, а третьего 10% такой свинины. Какова вероятность того, что взятая случайным образом свиная туша будет соответствовать норме содержания сала?
- 4. В хлебопекарне имеется 6 контейнеров для готовой продукции. При существующем режиме работы вероятность того, что в данный момент контейнер полностью загружен равна 0.8. Какова вероятность того, что в данный момент загружены не более четырех контейнеров? Найти наивероятнейшее число полностью загруженных контейнеров.
- 5. Вероятность поражения мишени при одном выстреле равна 0.8. Какова вероятность того, что при 100 выстрелах мишень будет поражена а) ровно 85 раз; б) не менее 75 раз?
- 7. Среднее число заявок, поступающих на склад в течение месяца, равно двум. Какова вероятность того, что в течение трех месяцев поступит а) ровно 3 заявки, б) более трех заявок?
- 8. Производится стрельба по удаляющейся цели из орудия. При первом выстреле вероятность попадания равна 0,8; при втором -0,4. Случайная величина X число попаданий в цель при двух выстрелах. Составить закон распределения. Построить график функции распределения. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
- 10. Длина изготовляемой детали представляет собой случайную величину, распределенную по нормальному закону. Средняя длина детали равна 50 мм, а дисперсия 0,25мм². Какое поле допуска длины изготовляемой детали можно гарантировать с вероятностью 0,99?

ИДЗ №9

Задана двухмерная выборка ХҮ. Для выборок Х и У необходимо:

- 1) Составить интервальный ряд распределения;
- 2) Найти выборочную среднюю, выборочную дисперсию и выборочное среднее квадратическое отклонение;
 - 3) Найти эмпирическую функцию распределения и построить ее график;

- 4) Построить гистограмму относительных частот;
- 5) Проверить гипотезу о нормальном распределении генеральной совокупности с помощью критерия Пирсона при уровне значимости 0,05;
 - 6) Построить график теоретической плотности вероятности;
- 7) Найти доверительные интервалы для оценки неизвестного математического ожидания генеральной совокупности с надежностью 0,95;
- 8) Составить корреляционную таблицу и в предположении о линейной зависимости между Х и У найти выборочный коэффициент корреляции;
- 9) Проверить гипотезу о значимости выборочного коэффициента корреляции при уровне значимости 0,05;
- 10) Найти выборочные уравнения прямой линии регрессии У на Х и прямой линии регрессии X на Y и построить графики на корреляционном поле.

Методика выполнения индивидуальных домашних заданий

1. Вычислить определитель третьего порядка $\begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 2 & 5 \end{vmatrix}$ тремя способами: 1) по правилу треугольника; 2) раскладывая по элементам второй строки; 3) раскладывая по эле-

ментам первого столбца.

Решение. 1) Вычисляем определитель, применяя правило треугольника:

$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 2 & 5 \end{vmatrix} = 1 \cdot 2 \cdot 5 + 2 \cdot 4 \cdot 0 + (-1) \cdot 2 \cdot 3 - 3 \cdot 2 \cdot 0 - 2 \cdot (-1) \cdot 5 - 2 \cdot 4 \cdot 1 =$$

$$=10-6+10-8=6$$
.

2) Вычисляем определитель по теореме Лапласа, раскладывая по элементам второй строки: $D = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23}$.

Если в определителе D зачеркнуть вторую строку и первый столбец, то получим:

$$M_{21} = \begin{vmatrix} 2 & 3 \\ 2 & 5 \end{vmatrix} = 2 \cdot 5 - 2 \cdot 3 = 4.$$

Алгебраическое дополнение A_{21} элемента a_{21} определителя D равно минору этого элемента $M_{\rm 21}$ взятому с обратным знаком, так как сумма номеров строки и столбца – число нечетное:

$$A_{21} = (-1)^{2+1} M_{21} = -M_{21} = 4$$
.

Аналогично вычисляются алгебраические дополнения A_{22} и A_{23} . Получаем

$$D = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 2 & 5 \end{vmatrix} = (-1) \cdot (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 2 & 5 \end{vmatrix} + 2 \cdot (-1)^{2+2} \begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} + 4 \cdot (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} =$$

$$= 1 \cdot 4 + 2 \cdot 5 - 4 \cdot 2 = 6.$$

б) Разложение определителя по элементам первого столбца имеет $D=a_{11}A_{11}+a_{21}A_{21}+a_{31}A_{31}$. Заметим, что A_{31} вычислять не требуется, так как $a_{31}=0$, следовательно, и $a_{31}A_{31}=0$.

$$D = \begin{vmatrix} 1 & 2 & 3 \\ -1 & 2 & 4 \\ 0 & 2 & 5 \end{vmatrix} = 1 \cdot (-1)^{1+1} \begin{vmatrix} 2 & 4 \\ 2 & 5 \end{vmatrix} + (-1) \cdot (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 2 & 5 \end{vmatrix} = 1 \cdot 2 + (-1) \cdot (-4) = 6.$$

2. Для двух матриц A и B найти: 1) линейную комбинацию матриц $\alpha A + \beta B$; 2) произведение матриц AB и BA; 3) обратную матрицу A^{-1} , если $\alpha = -2$, $\beta = 3$,

$$A = \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix}.$$

Pешение. 1) Матрицы одинакового порядка 3×3 , следовательно, операция сложения определена.

$$\alpha A + \beta B = -2 \cdot \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix} + 3 \cdot \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 8 & 0 & -2 \\ -4 & 2 & -6 \\ -6 & -4 & -4 \end{pmatrix} + \begin{pmatrix} 3 & 6 & -9 \\ 6 & 0 & 3 \\ -6 & 3 & 9 \end{pmatrix} = = \begin{pmatrix} 11 & 6 & -11 \\ 2 & 2 & -3 \\ -12 & -1 & -5 \end{pmatrix}.$$

2) Произведение AB имеет смысл, так как число столбцов матрицы A равно числу строк матрицы B. Находим матрицу C = AB:

$$C = A \cdot B = \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix} =$$

$$\begin{pmatrix} -4 \cdot 1 + 0 \cdot 2 + 1 \cdot (-2) & -4 \cdot 2 + 0 \cdot 0 + 1 \cdot 1 & -4 \cdot (-3) + 0 \cdot 1 + 1 \cdot 3 \\ 2 \cdot 1 + (-1) \cdot 2 + 3(-2) & 2 \cdot 2 + (-1) \cdot 0 + 3 \cdot 1 & 2 \cdot (-3) + (-1) \cdot 1 + 3 \cdot 3 \\ 3 \cdot 1 + 2 \cdot 2 + 2 \cdot (-1) & 3 \cdot 2 + 2 \cdot 0 + 2 \cdot 1 & 3 \cdot (-3) + 2 \cdot 1 + 2 \cdot 3 \end{pmatrix} =$$

$$\begin{pmatrix} -6 & -7 & 15 \\ -6 & 7 & 2 \\ 3 & 8 & -1 \end{pmatrix}.$$

Вычислим произведение BA

$$B \cdot A = \begin{pmatrix} 1 & 2 & -3 \\ 2 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{pmatrix} =$$

$$\begin{pmatrix} 1 \cdot (-4) + 2 \cdot 2 + (-3) \cdot 3 & 1 \cdot 0 + 2 \cdot (-1) + (-3) \cdot 2 & 1 \cdot 1 + 2 \cdot 3 + (-3) \cdot 2 \\ 2 \cdot (-4) + 0 \cdot 2 + 1 \cdot 3 & 2 \cdot 0 + 0 \cdot (-1) + 1 \cdot 2 & 2 \cdot 1 + 0 \cdot 3 + 1 \cdot 2 \\ (-2) \cdot (-4) + 1 \cdot 2 + 3 \cdot 3 & -2 \cdot 0 + 1 \cdot (-1) + 3 \cdot 2 & (-2) \cdot 1 + 1 \cdot 3 + 3 \cdot 2 \end{pmatrix} = \begin{pmatrix} -9 & -8 & 1 \\ -5 & 2 & 4 \\ 19 & 5 & 7 \end{pmatrix}$$

3. Находим определитель матрицы А:

$$\det A = \begin{vmatrix} -4 & 0 & 1 \\ 2 & -1 & 3 \\ 3 & 2 & 2 \end{vmatrix} = -4 \cdot \begin{vmatrix} -1 & 3 \\ 2 & 2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = -4 \cdot (-8) + 7 = 39$$
. Так как $\det A \neq 0$, то

существует обратная матрица A^{-1} .

Вычислим алгебраические дополнения A_{ii} всех элементов матрицы A:

$$A_{11} = (-1)^{1+1} \begin{vmatrix} -1 & 3 \\ 2 & 2 \end{vmatrix} = -8; \quad A_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = 5; \quad A_{13} = (-1)^{1+3} \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = 7;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 0 & 1 \\ 2 & 2 \end{vmatrix} = 2; \quad A_{22} = (-1)^{2+2} \begin{vmatrix} -4 & 1 \\ 3 & 2 \end{vmatrix} = -11; \quad A_{23} = (-1)^{2+3} \begin{vmatrix} -4 & 0 \\ 3 & 2 \end{vmatrix} = 8;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 0 & 1 \\ -1 & 3 \end{vmatrix} = 1; \quad A_{32} = (-1)^{3+2} \begin{vmatrix} -4 & 1 \\ 2 & 3 \end{vmatrix} = 14; \quad A_{33} = (-1)^{3+3} \begin{vmatrix} -4 & 0 \\ 2 & -1 \end{vmatrix} = 4.$$

Используя формулу (9) составляем обратную матрицу

$$A^{-1} = \frac{1}{39} \begin{pmatrix} -8 & 2 & 1 \\ 5 & -11 & 14 \\ 7 & 8 & 4 \end{pmatrix} = \begin{pmatrix} -\frac{8}{39} & \frac{2}{39} & \frac{1}{39} \\ \frac{5}{39} & -\frac{11}{39} & \frac{14}{39} \\ \frac{7}{39} & \frac{8}{39} & \frac{4}{39} \end{pmatrix}.$$

3. Определить ранг матрицы
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 7 & 11 & 15 \\ 3 & -3 & -3 & 6 \\ 6 & 3 & 6 & 6 \end{pmatrix}$$
.

Решение. Для того чтобы найти ранг матрицы, необходимо с помощью элементарных преобразований привести ее к треугольному виду и найти ранг полученной матрицы.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 7 & 11 & 15 \\ 3 & -3 & -3 & 6 \\ 6 & 3 & 6 & 6 \end{pmatrix} \xrightarrow{a_{2j} \to -3 \cdot a_{1j} + a_{2j} \atop a_{3j} \to -3 \cdot a_{1j} + a_{3j} \atop a_{4j} \to -6 \cdot a_{1j} + a_{4j}} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & -9 & -12 & -18 \\ 0 & -9 & -12 & -18 \end{pmatrix} \xrightarrow{a_{4j} \to -a_{3j} + a_{4j} \atop a_{3j} \to 9 \cdot a_{2j} + a_{3j}} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 6 & 9 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Ранг треугольной матрицы равен числу ненулевых строк матрицы, следовательно, rang A=3.

4. Решить систему
$$\begin{cases} x+3y-z=4\\ 2x-y-5z=-15 \text{ двумя способами: 1) с помощью обратной}\\ 5x+y+4z=19 \end{cases}$$

матрицы; 2) по формулам Крамера.

Решение. 1) Введем обозначения
$$A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & -1 & -5 \\ 5 & 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 4 \\ -15 \\ 19 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
. Вычис-

лим определитель системы

$$\det A = \begin{vmatrix} 1 & 3 & -1 \\ 2 & -1 & -5 \\ 5 & 1 & 4 \end{vmatrix} = \begin{vmatrix} 7 & 0 & -16 \\ 2 & -1 & -5 \\ 7 & 0 & -1 \end{vmatrix} = (-1) \cdot (-1)^{2+2} \begin{vmatrix} 7 & -16 \\ 7 & -1 \end{vmatrix} = -7 \begin{vmatrix} 1 & -16 \\ 1 & -16 \end{vmatrix} = -7 \begin{vmatrix} 1 & -16 \\ 1 & -16 \end{vmatrix} = -7 \begin{vmatrix} 1 & -16$$

$$= -7 \cdot 15 = -105$$

 $\det A \neq 0 \implies A^{-1}$ существует. Найдем элементы обратной матрицы A^{-1} :

$$A_{11} = \begin{vmatrix} -1 & -5 \\ 1 & 4 \end{vmatrix} = 1, \quad A_{12} = -\begin{vmatrix} 2 & -5 \\ 5 & 4 \end{vmatrix} = -33, \quad A_{13} = \begin{vmatrix} 2 & -1 \\ 5 & 1 \end{vmatrix} = 7, \quad A_{21} = -\begin{vmatrix} 3 & -1 \\ 1 & 4 \end{vmatrix} = -13,$$

$$A_{22} = \begin{vmatrix} 1 & -1 \\ 5 & 4 \end{vmatrix} = 9, \quad A_{23} = -\begin{vmatrix} 1 & 3 \\ 5 & 1 \end{vmatrix} = 14, \quad A_{31} = \begin{vmatrix} 3 & -1 \\ -1 & -5 \end{vmatrix} = -16, \quad A_{32} = -\begin{vmatrix} 1 & -1 \\ 2 & -5 \end{vmatrix} = 3,$$

$$A_{33} = \begin{vmatrix} 1 & 3 \\ 2 & -1 \end{vmatrix} = -7.$$

Согласно формуле (9) имеем:
$$A^{-1} = -\frac{1}{105} \begin{pmatrix} 1 & -13 & -16 \\ -33 & 9 & 3 \\ 7 & 14 & -7 \end{pmatrix}$$
.

Тогда решение системы запишется в виде (12):

$$X = A^{-1}B = -\frac{1}{105} \begin{pmatrix} 1 \cdot 4 - 13(-15) - 16 \cdot 19 \\ -33 \cdot 4 + 9(-15) + 3 \cdot 19 \\ 7 \cdot 4 + 14(-15) - 7 \cdot 19 \end{pmatrix} = -\frac{1}{105} \begin{pmatrix} -105 \\ -210 \\ -315 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Таким образом, x = 1, y = 2, z = 3.

2) Вычислим определитель
$$D = \begin{vmatrix} 1 & 3 & -1 \\ 2 & -1 & -5 \\ 5 & 1 & 4 \end{vmatrix} = -105 \neq 0$$
, следовательно, система

имеет единственное решение, которое можно найти по формулам Крамера (13). Вычислим вспомогательные определители:

$$D_1 = \begin{vmatrix} 4 & 3 & -1 \ -15 & -1 & -5 \ 19 & 1 & 4 \end{vmatrix} = -105,$$
 $D_2 = \begin{vmatrix} 1 & 4 & -1 \ 2 & -15 & -5 \ 5 & 19 & 4 \end{vmatrix} = -210,$ $D_3 = \begin{vmatrix} 1 & 3 & 4 \ 2 & -1 & -15 \ 5 & 1 & 19 \end{vmatrix} = -315.$ Отсюда $x = \frac{-105}{105} = 1$, $y = \frac{-210}{105} = 2$, $z = \frac{-315}{105} = 3$.

5. Решить системы линейных уравнений методом Гаусса, выяснив предварительно вопрос о ее совместности с помощью теоремы Кронекера-Капелли. В случае неопределенности системы найти ее общее, базисное и любое частное решение.

$$\begin{cases} x_1 + x_2 - 2x_3 - x_4 + x_5 = 1 \\ 3x_1 - x_2 + x_3 + 4x_4 + 3x_5 = 4 \\ x_1 + 5x_2 - 9x_3 - 8x_4 + x_5 = 0 \end{cases}$$

Преобразуем расширенную матрицу системы при помощи элементарных преобразований к ступенчатому виду:

$$\begin{pmatrix}
1 & 1 & -2 & -1 & 1 & | 1 \\
3 & -1 & 1 & 4 & 3 & | 4 \\
1 & 5 & -9 & -8 & 1 & | 0
\end{pmatrix}
\xrightarrow{\begin{array}{c}
a_{2j} \to -3 \cdot a_{1j} + a_{2j} \\
a_{3j} \to -a_{1j} + a_{3j}
\end{array}}$$

$$\begin{pmatrix}
1 & 1 & -2 & -1 & 1 & | 1 \\
0 & -4 & 7 & 7 & 0 & | 1 \\
0 & 4 & -7 & -7 & 0 & | -1
\end{pmatrix} =$$

$$\xrightarrow{\begin{array}{c}
a_{3j} \to a_{2j} + a_{3j} \\
0 & 0 & 0 & 0 & 0
\end{array}}$$

$$\begin{pmatrix}
1 & 1 & -2 & -1 & 1 & | 1 \\
0 & -4 & 7 & 7 & 0 & | 1 \\
0 & 0 & 0 & 0 & 0 & | 0
\end{pmatrix}.$$

 $rangA = rangA^* = r = 2$ и, согласно теореме Кронекера-Капелли, система совместна, при этом число неизвестных n = 5, r = 2 \Rightarrow система имеет бесконечное множество ненулевых решений.

Выберем базисными переменными x_1 , x_2 , так как базисный минор $\begin{vmatrix} 1 & 1 \\ 0 & -4 \end{vmatrix} \neq 0$, остальные переменные x_3 , x_4 , x_5 объявляем свободными и переносим в правые части

уравнений. Исходная система свелась к эквивалентной системе

$$\begin{cases} x_1 + x_2 = 1 + 2x_3 + x_4 - x_5 \\ -4x_2 = 1 - 7x_3 - 7x_4 \end{cases}$$

которая соответствует преобразованной расширенной матрице.

Выражая базисные переменные через свободные, получим общее решение

$$\begin{cases} x_1 = \frac{5}{4} + \frac{1}{4}x_3 - \frac{3}{4}x_4 - x_5 \\ x_2 = -\frac{1}{4} + \frac{7}{4}x_3 + \frac{7}{4}x_4 \end{cases}$$

При
$$x_3=x_4=x_5=0$$
 имеем $x_1=\frac{5}{4}$, $x_2=-\frac{1}{4}$, таким образом $(\frac{5}{4},-\frac{1}{4},0,0,0)$ —

базисное решение. В качестве одного из частных решений можно взять $(\frac{1}{4}, -\frac{1}{4}, 0, 0, 1)$.

Критерии и шкала оценки ИДЗ:

- оценка «зачтено» выставляется обучающимся, если они владеют материалом, ориентируются в алгоритмах, знают основные математические преобразования, умеют выбрать наиболее рациональный алгоритм, грамотно и аргументировано обосновывают полученные результаты;
- оценка «не зачтено» выставляется обучающимся, не владеющим основополагающими знаниями по поставленному вопросу, если они не могут выполнить

основные математические преобразования, допускают ошибки в математических действиях и не исправляют своих ошибок после наводящих вопросов.

Тематика докладов по дисциплине

- 1) Численные методы решения систем линейных алгебраических уравнений и их реализация в Excel.
- 2) Линейные модели в экономике.
- 3) Применение матриц в экономике.
- 4) Собственные числа и собственные векторы линейного оператора
- 5) Метод Жордана Гаусса решения систем линейных уравнений
- 6) Градиентный метод поиска экстремумов.
- 7) Многофакторные производственные функции.
- 8) Задача распределения средств между предприятиями.
- 9) Байесовский подход к принятию решений.
- 10) Законы распределения производственных погрешностей.
- 11) Статистические методы анализа финансового рынка.

Критерии и шкала оценивания докладов:

- оценка «зачтено» выставляется, если обучающийся подготовил доклад по выбранной теме, отражающий основные положения рассматриваемого вопроса и выступил на практическом занятии;
- оценка «не зачтено» выставляется, если не подготовлен доклад по выбранной теме или в нем не раскрыто основное содержание материала.

Варианты кейс-задач

Кейс-задача 1. При производстве некоторого изделия вероятность брака равна 0,2.

- (I) Составить закон распределения случайной величины X числа бракованных изделий, если изготовлено три изделия.
- (II) Пусть при производстве бракованного изделия предприятие терпит убытки в размере тыс. руб., а=20 при производстве небракованного изделия получает прибыль в размере b=10 тыс. руб. Тогда математическое ожидание прибыли предприятия равно тыс. руб.
- (III) Ожидаемая прибыль предприятия будет нулевой, если значения убытка a и прибыли b равны ...

1)
$$a = 40$$
, $b = 10$ 2) $a = 20$, $b = 5$
3) $a = 10$, $b = 40$ 4) $a = 5$, $b = 20$

(выберите два и более вариантов ответа)

Кейс-задача 2. Во время весеннего паводка изменение объема поступающей в озеро воды в течение суток можно описать уравнением $\frac{dS}{dt} = 10 + 4t$, где S(t) – объем поступившей в озеро воды (в м³) за время t (в часах), $0 \le t \le 24$.

Для того чтобы уровень воды в озере не превысил предельный уровень, оборудован сток воды из озера с постоянной скоростью $58 \text{ m}^3/\text{ч}$. В момент времени t=0 объем воды в озере составил 30000 m^3 .

- (I) Составить математическую модель для нахождения объем воды в озере в момент времени t.
- (II) Если в момент времени t=18 сток воды из озера был перекрыт и до конца суток вода из озера не вытекала, то объем воды в озере в конце дня (t=24) будет равен м³

Методика выполнения кейс-задачи 1

(I) Составим закон распределения случайной величины X, используя теорему умножения для независимых событий:

$$P_3(0) = P(\overline{A}) \cdot P(\overline{A}) \cdot P(\overline{A}) = 0.8 \cdot 0.8 \cdot 0.8 = 0.512$$

 $P_3(1) = 3 \cdot P(\overline{A}) \cdot P(\overline{A}) \cdot P(A) = 3 \cdot 0.8 \cdot 0.8 \cdot 0.2 = 0.384$

$$P_3(2) = 3 \cdot P(\overline{A}) \cdot P(A) \cdot P(A) = 3 \cdot 0.8 \cdot 0.2 \cdot 0.2 = 0.096$$

$$P_3(3) = P(A) \cdot P(A) \cdot P(A) = 0.2 \cdot 0.2 \cdot 0.2 = 0.008$$

X	0	1	2	3
p	0,512	0,384	0,096	0,008

(I) Составим закон распределения случайной величины X (прибыль)

X	3b	2b-a	b-2a	-3a
р	0,512	0,384	0,096	0,008

При a = 20, b = 10 получаем:

X	30	0	-30	60
p	0,512	0,384	0,096	0,008

Математическое ожидание прибыли составит:

$$30 \cdot 0.512 - 30 \cdot 0.096 + 60 \cdot 0.008 = 12$$
 (mbic.py6).

(III) Ожидаемая прибыль предприятия будет нулевой, если

$$3b \cdot 0.512 + (2b - a) \cdot 0.384 + (b - 2a) \cdot 0.096 + (-3a)0.008 = 0$$

$$2,4b = 0,6a$$
 $\Rightarrow a = 4b$.

Критерии и шкала оценки кейс-задачи:

- оценка «зачтено» выставляется студенту, если при решении задачи составлен правильный закон распределения случайной величины X, проведены верные расчеты числовых характеристик случайной величины X;
- оценка «не зачтено» выставляется студенту, если неверно составлен закон распределения случайной величины X или проведены неверные расчеты числовых характеристик случайной величины X с использованием правильно составленного закона распределения случайной величины X.

Оценочные средства для проведения промежуточной аттестации

Экзамен проводится по экзаменационным билетам, содержащим 2 вопроса и практическое задание, необходимое для контроля умения и владения.

Пример билета

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Самарский государственный аграрный университет» Направление подготовки: 38.03.01 Экономика Профиль: «Экономика предприятий и организаций» Кафедра «Физика, математика и информационные технологии» Дисциплина: «Высшая математика»

Экзаменационный билет № 1

L) Ранг	матрицы	и его	вычисление.
---	--------	---------	-------	-------------

2) Расстояние от точки до плоскости.

	Вычислить п			1-	$\cos x$
3)	Вычислить п	редел	функции	lım—	—.
			13	$x\rightarrow 0$	\boldsymbol{x}

Составитель	С.В. Плотникова
Заведующий кафедрой	 Д.В. Миронов
« » 20 г.	

Перечень вопросов к экзамену

- 1) Понятие матрицы. Виды матриц.
- 2) Определители квадратных матриц и их свойства.
- 3) Миноры и алгебраические дополнения. Теорема Лапласа.
- 4) Операции над матрицами.
- 5) Элементарные преобразования матриц. Обратная матрица.
- 6) Ранг матрицы и его вычисление.
- 7) Матричный способ решения СЛАУ.
- 8) Формулы Крамера. Критерий Кронекера-Капелли совместности СЛАУ.
- 9) Схема решения СЛАУ методом Гаусса.
- 10) Понятие вектора. Виды векторов. Длина вектора. Направляющие косинусы вектора.
- 11) Линейная зависимость и независимость векторов.
- 12) Базис. Разложение вектора по базису.
- 13) Скалярное, векторное и смешанное произведение векторов, их свойства.
- 14) Различные формы задания прямой на плоскости.
- 15) Взаимное расположение прямых.
- 16) Расстояние от точки до прямой.
- 17) Комплексные числа, их изображение на плоскости. Модуль и аргумент комплексного числа. Различные формы записи комплексного числа.
- 18) Алгебраические действия с комплексными числами.
- 19) Канонические уравнения кривых второго порядка: эллипса, гиперболы, параболы и их характеристики.
- 20) Плоскость и ее уравнения: уравнение связки плоскостей; общее уравнение плоскости и его частные случаи; уравнение плоскости, проходящей через три данные точки; уравнение плоскости в отрезках; нормальное уравнение плоскости.
- 21) Расстояние от точки до плоскости. Взаимное расположение плоскостей
- 22) Прямая в пространстве и ее уравнения: общие уравнения прямой; векторное уравнение прямой; параметрические и канонические уравнения прямой; уравнение прямой, проходящей через две точки.
- 23) Изменение формы уравнений прямой. Взаимное расположение прямых и плоскостей.
- 24) Предел функции, основные свойства пределов.
- 25) Бесконечно малые и бесконечно большие функции и их свойства.
- 26) Непрерывность функции в точке и на интервале.
- 27) Определение производной функции, ее геометрический смысл.
- 28) Основные правила дифференцирования.
- 29) Производная сложной и параметрически заданных функций.
- 30) Дифференциал функции.
- 31) Производные и дифференциалы высших порядков.
- 32) Основные теоремы дифференциального исчисления: теоремы Ролля, Лагранжа, Коши и их применение.
- 33) Теорема Лопиталя.
- 34) Экстремум функции. Выпуклость и вогнутость графика функции, точки перегиба. Асимптоты графика.
- 35) Определение функции многих переменных (ФМП). Область определения ФМП. Частные приращения и частные производные ФМП.
- 36) Полный дифференциал. Дифференцирование сложной и неявной функций.
- 37) Скалярное поле. Поверхности и линии уровня.
- 38) Производная по направлению. Градиент.
- 39) Экстремум функции двух переменных. Необходимое и достаточное условие существования экстремума
- 40) Наименьшее и наибольшее значения ФМП на замкнутом множестве.
- 41) Первообразная функции. Неопределённый интеграл и его свойства.
- 42) Таблица основных интегралов. Интегрирование заменой переменной.
- 43) Интегрирование по частям.

- 44) Интеграл от функций, содержащих квадратный трехчлен.
- 45) Интегрирование рациональных дробей.
- 46) Интегрирование тригонометрических функций.
- 47) Интегрирование некоторых иррациональных функций.
- 48) Определенный интеграл определение и свойства.
- 49) Связь между определенным интегралом и первообразной функцией. Формула Ньютона-Лейбница.
- 50) Геометрические приложения определенного интеграла.
- 51) Несобственные первого и второго рода
- 52) Криволинейные интегралы, их вычисление и условие независимости от линии интегрирования.
- 53) Числовые ряды определение, действия над ними.
- 54) Понятие сходимости, свойства сходящихся рядов. Необходимое условие сходимости.
- 55) Ряды с положительными членами. Достаточные признаки сходимости Даламбера, Коши, сравнения рядов.
- 56) Знакопеременные ряды. Достаточный признак сходимости знакочередующихся рядов (признак Лейбница).
- 57) Абсолютная и условная сходимость знакопеременных рядов. Свойства абсолютно сходящихся рядов. Оценка остаточного члена ряда
- 58) Функциональные ряды. Сходимость функциональных рядов.
- 59) Степенные ряды. Теорема Абеля. Интервал и радиус сходимости степенного ряда.
- 60) Действия со степенными рядами.
- 61) Разложение функций в степенные ряды. Разложение некоторых элементарных функций в ряд Маклорена. Оценка остаточного члена.
- 62) Элементы комбинаторики: перестановки, размещения, сочетания.
- 63) Виды случайных событий. Классическое определение вероятности. Теорема сложения вероятностей. Зависимые и независимые события.
- 64) Условная вероятность. Теорема умножения вероятностей.
- 65) Формула полной вероятности. Формула Байеса.
- 66) Повторные независимые испытания. Формула Бернулли. Свойства биномиального распределения вероятностей. Наивероятнейшее число наступлений событий.
- 67) Локальная теорема Лапласа. Интегральная теорема Лапласа. Асимптотическая формула Пуассона.
- 68) Случайные величины и законы их распределения. Дискретные и непрерывные случайные величины. Способы задания дискретной и непрерывной случайных величин и их свойства.
- 69) Числовые характеристики случайных величин и их свойства.
- 70) Вероятность попадания случайной величины в интервал.
- 71) Нормальное распределение и его числовые характеристики
- 72) Показательный, нормальный законы распределения непрерывной случайной величины.
- 73) Основы статистического описания. Генеральная и выборочная совокупность.
- 74) Вариационный ряд, его числовые характеристики и графическое представление.
- 75) Статистические оценки. Точечные оценки.
- 76) Интервальная оценка. Доверительный интервал. Уровень значимости. Доверительный интервал для оценки математического ожидания и среднего квадратичного отклонения нормального распределения.
- 77) Статистическая гипотеза. Ошибки первого и второго рода. Общая схема проверки гипотез. Проверка гипотезы о равенстве генеральных средних двух нормальных совокупностей.
- 78) Проверка гипотезы о равенстве генеральных дисперсий двух нормальных совокупностей
- 79) Проверка гипотезы о распределении генеральной совокупности. Критерии согласия Пирсона.
- 80) Функциональная, статистическая и корреляционная зависимости. Основные положения корреляционно-регрессионного анализа.
- 81) Линейная парная регрессия. Коэффициент корреляции. Уравнения регрессии. Проверка значимости и интервальная оценка параметров связи.

8.3 Критерии оценивания уровня сформированности компетенций

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов знать, уметь, владеть заявленных дисциплинарных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

TTT		
ППкапа	оценивания	экзамена
HIINAJIA	OHCHRIBAHRIA	JIVOGINICHA

Результат	Уровень	Критерии
экзамена	освоения компе-	
	тенций	
«отлично»	высокий	Обучающийся глубоко и прочно усвоил программный материал,
	уровень	исчерпывающе, последовательно, грамотно и логически стройно
		его излагает, тесно увязывает теорию с практикой. При этом обу-
	чающийся не затрудняется с ответом при видоизменении за	
		правильно обосновывает принятые решения, владеет разносторон-
		ними навыками и приемами выполнения практических работ.
«хорошо»	повышенный	Обучающийся твердо знает программный материал, грамотно и по
	уровень	существу излагает его, не допускает существенных неточностей в
		ответе на вопрос. Он должен правильно применять теоретические
		положения при решении практических вопросов, владеть необхо-
		димыми навыками и приемами их выполнения.
«удовлетво-	пороговый уро-	Обучающийся имеет знания только по основному материалу, но не
рительно»	вень	усвоил его детально, допускает неточности, недостаточно пра-
		вильные формулировки, нарушения последовательности в изложе-
		нии материала и испытывает затруднения в выполнении практиче-
		ских работ.
«неудовле-	минимальный	Обучающийся не знает значительной части программного мате-
творитель-	уровень не дос-	риала, допускает существенные ошибки, неуверенно с большими
HO>>	тигнут	затруднениями выполняет практические работы или отказывается
		от ответа.

8.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

Оценка знаний, умений, навыков, характеризующая этапы формирования компетенций по дисциплине проводится в форме текущей и промежуточной аттестации.

Контроль текущей успеваемости обучающихся – текущая аттестация – проводится в ходе семестра с целью определения уровня усвоения обучающимися знаний; формирования у них умений и навыков; своевременного выявления преподавателем недостатков в подготовке обучающихся и принятия необходимых мер по ее корректировке; совершенствованию методики обучения; организации учебной работы и оказания обучающимся индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся:

- на занятиях (решение задач, доклад);
- по результатам выполнения индивидуальных домашних заданий (ИДЗ);
- по результатам проверки качества конспектов лекций и иных материалов;
- по результатам отчета обучающихся в ходе индивидуальной консультации преподавателя, проводимой в часы самоподготовки, по имеющимся задолженностям.

Контроль за выполнением обучающимися каждого вида работ может осуществляться поэтапно и служит основанием для предварительной аттестации по дисциплине.

Промежуточная аттестация по дисциплине проводится с целью выявления соответствия уровня теоретических знаний, практических умений и навыков по дисциплине требованиям ФГОС по направлению подготовки в форме экзамена.

Экзамен проводится после завершения изучения дисциплины в объеме рабочей учебной программы. Форма проведения экзамена определяется кафедрой (устный – по

билетам). Оценка по результатам экзамена: *«отлично»*, *«хорошо»*, *«удовлетворительно»*, *«неудовлетворительно»*.

Все виды текущего контроля осуществляются на практических занятиях, во время выполнения индивидуальных домашних заданий.

Каждая форма контроля по дисциплине включает в себя теоретические вопросы, позволяющие оценить уровень освоения обучающимися знаний и практические задания, выявляющие степень сформированности умений и навыков.

Процедура оценивания компетенций, обучающихся основана на следующих стандартах:

- 1. Периодичность проведения оценки (на каждом занятии).
- 2. Многоступенчатость: оценка (как преподавателем, так и обучающимися группы) и самооценка обучающегося, обсуждение результатов и комплекса мер по устранению недостатков.
- 3. Единство используемой технологии для всех обучающихся, выполнение условий сопоставимости результатов оценивания.
- 4. Соблюдение последовательности проведения оценки: предусмотрено, что развитие компетенций идет по возрастанию их уровней сложности, а оценочные средства на каждом этапе учитывают это возрастание.

Краткая характеристика процедуры реализации текущего контроля и промежуточной аттестации по дисциплине для оценки компетенций обучающихся представлена в таблице:

arre	стации по дисциі	ена в таолице.	
$N_{\underline{0}}$	Наименование	Краткая характеристика процедуры оценивания	Представление
Π/Π	оценочного	компетенций	оценочного
	средства		средства в фонде
1	Доклад	Продукт самостоятельной работы обучающегося, представляющий собой краткое изложение полученных результатов теоретического анализа определенной научной (учебно-исследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит	Темы докладов
		различные точки зрения, а также собственные взгляды на нее. Доклад — публичное выступление по представлению полученных результатов решения определенной учебно-исследовательской или научной темы. Тематика докладов выдается на занятии, выбор темы осуществляется самостоятельно. Подготовка осуществляется во внеаудиторное время. Результаты	
		озвучиваются на практических занятиях, регламент — 7 мин. на выступление. В оценивании результатов наравне с преподавателем принимают участие обучающиеся.	
2	Индивидуально е домашнее задание	Индивидуальное домашнее задание — вид учебного задания, направленного на закрепление теоретических знаний по основным разделам дисциплины, приобретение навыков самостоятельного расчета математических величин, в том числе при решении практикоориентированных задач.	Комплект индивидуальных домашних заданий
3	Кейс-задача	Кейс-задача — модель конкретной реальной ситуации, направленная на формирование комплекса знаний и умений обучающегося по формулированию проблемы (описанию исходной ситуации), выработке возможных вариантов ее решения в соответствии с установленными критериями.	Кейс-задачи
4	Экзамен	Проводится в заданный срок, согласно графику учебного процесса. При выставлении оценок учитывается уровень приобретенных компетенций обучающегося. Компонент «знать» оценивается теоретическими вопросами по содержанию дисциплины, компоненты «уметь» и «владеть» - практикоориентированными заданиями.	Комплект вопросов к экзамену .

Рабочая программа составлена на основании федерального государственного образовательного стандарта высшего образования (ФГОС ВО).

Рабочую программу разработал: доцент кафедры «Физика, математика и информационные технологии», канд. пед. наук С. В. Плотникова

Рассмотрена и одобрена на заседании кафедры «Физика, математика и информационные технологии» 12 мая 2023 г., протокол № 8.

Заведующий кафедрой канд. физ.-мат. наук, доцент Д. В. Миронов

_///__

СОГЛАСОВАНО:

Председатель методической комиссии экономического факультета канд. экон. наук, доцент Ю. Н. Кудряшова

Hyff

Руководитель ОПОП ВО канд. экон. наук, доцент Н. Н. Липатова

И.о. начальника УМУ М. В. Борисова

1